手机浏览器扫描二维码访问
ETL和CDC。
近年来,深度学习已经成为了计算机领域和其他领域学习与科研中的热门话题,虽
然人类已经利用卷积神经网络模型进行了许多与深度学习有关的科学研究,但是卷积神
经网络模型内部却仍像一个“黑匣子”
。
因此为了认识和理解模型内部的工作机理,对
其从内部卷积计算核和卷积层中获取到的特征进行分类,且理解从卷积神经网络中每一
级所获取到的图像特征信息,是深度学习领域中的关键任务之一。
通过特征可视化的结
果,对网络结构进行适当调节以优化网络,避免盲目调参,进而以更快的速率使网络特
性信息达到最优化。
中重点利用了基于梯度分析的可视化方法,研究了针对不同卷积神经网络模型
的可视化效果,按照图像数据集中包含的图像数据,分别从单目标和多目标两个类别来
开展研究工作。
本文的工作内容如下:
基于反卷积技术进行卷积神经网络每一层特征可视化的分析。
实验结果表明低
层卷积层主要提取的是输入图像的颜色、轮廓及纹理等简单的特征,而高层则提取的是
输入图像中眼睛、嘴、翅膀等更加复杂抽象的特征,网络层数越深的模型,其内部提取
到的特征更加的接近实物的细节特征。
提出一种基于激活的特征可视化方法。
该方法以热力图的可视化方式对
输入图像进行可视化分析,实验结果表明动物的头部特征是网络模型作出决策的重要依
据。
在此方法的基础上针对多目标进行特征可视化,提出一种改进的Grad-CAM++方法,
该方法主要通过更新图像最后一层权重的计算方式并结合目标选择梯度来对包含多个同
类目标的图像进行特征可视化。
实验结果表明该方法相比于其他的可视化方法,在多目
标图像的可视化中表现更佳,生成的热力图中包含的同类目标信息更多。
(3)为了更好地对可视化效果进行评价,提出评估可视化效果的新方法。
该方
简介我叫江羽,本想一直留在山上陪着我的绝色师父,却被师父赶去祸害未婚妻了。而且多少?九份婚书!?...
意外撞见女上司在办公室和陌生男人勾勾搭搭,齐涛偷偷拍下照片,依靠这个底牌,他一路逆袭,而女领导对他也由最开始的恨,逐渐改变了态度...
朝中无人莫做官,重活一世的秦毅不是这样认为。机遇来自于谋划,时时为朝前铺路,才能高官极品!上一世,含冤入狱,前途尽毁,孤独终老。这一世,从救省城下来的女干部开始,抓住每一个机遇,加官进爵,弥补遗憾,扶摇直上九万里!...
前世被当副镇长的老婆离婚后,崔向东愤怒下铸成了大错,悔恨终生!几十年后,他却莫名重回到了这个最重要的时刻!他再次面对要和他离婚的副镇长老婆,这次,他会怎么做?...
林风因意外负伤从大学退学回村,当欺辱他的地痞从城里带回来一个漂亮女友羞辱他以后,林风竟在村里小河意外得到了古老传承,无相诀。自此以后,且看林风嬉戏花丛,逍遥都市!...
阴错阳差中,仕途无望的宋立海认识了神秘女子,从此一步步走上了权力巅峰...